TEACHERS AS SCHOLARS: UNDERSTANDING GLOBAL WARMING Gabriel Vecchi & Mike Winton 18 Jan 2011 NOAA/GFDL ## EARTH'S ENERGY BALANCE IS THE KEY TO GLOBAL CLIMATE CHANGES I) Only a small minority of atmospheric molecules contribute to the greenhouse effect - 2) Water vapor, the most important greenhouse gas, is present in an amount determined by temperature (it acts as a positive feedback) - 3) The change in greenhouse effect from changing a greenhouse gas concentration depends on the fractional change Wikipedia # CO₂ AND CLIMATE: PALEOCENE-EOCENE WARM EVENT ### CO2 AND CLIMATE: ICE AGE CYCLES ### Atmospheric CO₂ is increasing ATMOSPHERIC CO₂ WAS STABLE PRIOR TO THE 19TH CENTURY THE RISE IN GREENHOUSE GASES OCCURRED IN THE INDUSTRIAL ERA WITH INCREASED USE OF FOSSIL FUELS The chemical fingerprint of the atmospheric carbon increase tells us: - 1) the added carbon is old (14C is low) - 2) it has a biological source (¹³C is low) - 3) it is produced by combustion or respiration (O_2 is decreasing) #### Where Do Human Carbon Emissions Go? Source: D. Archer lecture #### EARTH'S SURFACE IS WARMING Annual Mean Surface Temperature Anomaly (°C) 2010, warmest (tie) of 131 years 0.63 2005, warmest (tie) of 131 years 0.62 Global Land-Ocean Temperature Index 1998, 3rdwarmest (tie) of 131 years 0.56 Base Period: 1951-1980 - Annual Mean 5-year Running Mean emperature Anomaly (°C 3 4.8 GISS Temperature 1900 1920 1940 1960 1980 2000 1880 #### THE OCEANS ARE WARMING ## SNOW & ICE ARE DECLINING GLOBALLY Year # SEA LEVEL IS RISING (ice melt + seawater expansion) THERE ARE NUMEROUS ANTHROPOGENIC FORCINGS OF CLIMATE CHANGE #### EMISSIONS GROWTH HAS POWERFUL SOCIO-ECONOMIC DRIVERS # CLIMATE MODEL EQUATIONS ARE SOLVED ON GLOBAL GRIDS #### SIMULATED VS. PARAMETERIZED - **Simulated** processes: larger than grid-scale, based on bedrock scientific principles (conservation of energy, mass and momentum). Example: storms. - **Parameterized** processes: smaller than grid scale, formulations guided by physical principles but also make use of observational data. Example: clouds. - As model **resolution** increases, we are able to simulate some processes that are currently parameterized. - As model comprehensiveness increases, we are able to account for more processes (either as parameterized or simulated) ## Using Climate Models to Understand the Past: Detection and Attribution (2) Attribution: anthropogenic forcing is that "something" (1) Detection: something beyond natural variability is happening to the global climate ## Using Climate Models: Detection and Attribution at the Continental Scale #### Using Climate Models to Project Future Climate: Need Emissions IPCC ## PROJECTION: 2 I ST CENTURY GLOBAL TEMPERATURE RISES FURTHER #### Projection: The Hydrologic Cycle Intensifies #### **Projected Patterns of Precipitation Changes** ### Projection: Sea Level Rises Further Caveat: ice sheet dynamic response not fully modeled # Even if emissions were cut to zero, temperature would fall very slowly #### SCIENCE DOES NOT DICTATE ACTION Basic greenhouse physics CO₂ increase anthropogenic Earth is warming More certain Warming is anthropogenic Future climate change Impacts of future climate change Less certain